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Photochemical Ozone Production 
NOx , VOC Reactivity, HOx production
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Warmer climate
•

 
Most reactions faster

•
 

More H2

 

O (same RH)
•

 
More evaporative emissions

•
 

More biogenics

•
 

Controls expected to produce dramatic 
local NOx

 

reductions in CA but controls 
insufficient to prevent global increases in 
NOx

 

and O3

Future



VOC Reactivity VOC Reactivity 
Anthropogenic VOC: Emissions and RAnthropogenic VOC: Emissions and RVOCVOC

mol s-1 s-1

Steiner et al 2007



VOC Reactivity VOC Reactivity 
Biogenic VOC: Emissions and RBiogenic VOC: Emissions and RVOCVOC

mol s-1 s-1

Steiner et al 2007



Effect of Effect of ΔΔBVOC on OzoneBVOC on Ozone
% Increase in BVOC Change in O3 (ppb)

Biogenic emissions of isoprene & MBO peak at 37ºC

Terpene

 

emissions increase exponentially with T

Steiner et al 2006



Steiner et al. (JGR 2006)
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Berkeley LIF NO2

• Direct and specific
• accurate: ±5%, 1σ
• sensitive: 1ppt/min, 

S/N=2
• detection limit <1ppt 
• ~ 4 days unattended

• Also, smaller, lower 
cost versions using 
blue (408nm) and red 
(638 nm) lasers 
20ppt/min

Thornton, et al. Anal. Chem. 72, 528 2000
Cleary, et al.  Appl. Opt. 41, 6950, 2002

UCB TD-LIF on the NASA DC-8



ΣPNs, ΣANs, & 
HNO3 + heat →

 ROx + NO2

Thermal
Dissociation-LIF

Doug A. Day, et al, 
JGR., 107(D6), ‘02.
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Detailed Chemical Model

•
 

170 individual chemicals + 7 lumped 
•

 
350 reactions based on MCM

•
 

Dilution with free troposphere based on 
long-lived tracers ~ 0.3hr-1
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Concentrations of HOx

Fixed VOC Reactivity and PHOx

50 km



Atmospheric reactive nitrogen

How fast is NOx removed?  



What happens to the 
NOx

 
lifetime

 
as NOx

 
decreases? 
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The weekend effect in NOx causes a
weekend effect in OH.

The weekend effect in OH causes a
weekend effect in isoprene.

Murphy et al. ACPD 6, 11971-12019, 2006 and 6, 11427-11464, 2006 
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Rural NOx
OH isoprene

Sun Mon TWTh Fri Sat



The qualitative pattern of NOx 
control over OH is supported by 
day-of-week variations in the 
observations of isoprene.



Quantitative test #1:

The HOx Budget vs. NOx



6 km from downtown 
Nashville,TN

Thornton et al. JGR 107 (D12) 2002

Joel Thornton
Now at UW Seattle
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HOx in steady state

PHOx = LHOx or PHOx /LHOx = 1

P/L

Fraction of HOx sink by RO2 +HO2

1
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In 2002 we suggested that the products of RO2 + HO2 are 
mostly (90%) chain carriers not chain terminators, for 
example

ROOH + hν → RO + OH 

RO2 + HO2 → RO + OH + O2

Implication: RO2 + HO2 not understood



RO2 + HO2 → RO + OH + O2

Hasson, Tyndall and Orlando J. Phys. Chem. A 108 5979, 2004
also Jenkin et al. 2007 and Dillon and Crowley 2008

For oxygenated RO2 radicals + HO2 (~30-50% OH yields)

Consistent with direct measurements of OH by Penn State (Brune) and Mainz 
(Lelieveld) groups.

Both observe OH much larger than predicted when isoprene is high and NOx 
is low.

RO2 + HO2 recycles OH



Quantitative Test #2: 

HNO3 /NO2 vs. Temperature



Sacramento
Blodgett

Doug Day
now postdoc at
UC Davis



Red Hot (26.5°-30°C)

Blue Cold (20°-23.5°C)

Summer 2001: Diurnal Cycle

Constant
NO2

HNO3
doubles



PHNO3 = k[OH][NO2 ]

LHNO3 = Deposition and Mixing

OH ~ C’ [HNO3 ]/[NO2 ]

HNO3 is in approximate steady state during the day
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In contrast a detailed model with standard 
chemistry (Idalia Perez) has zero temperature 
dependence
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BEARPEX 2007 and 2009
 https://webfiles.berkeley.edu/~bearpex0708/

•
 

Fluxes and vertical gradients of NOyi

 

(Cohen, 
Thornton, Atlas, Wennberg)

•
 

Detailed VOC including H2

 

CO, glyoxal, 
sesquiterpene

 
oxidation products gradients and 

fluxes (Goldstein, de Gouw, Faloona, Keutsch)
•

 
Acids and peroxides (Wennberg)

•
 

Aerosol composition and fluxes (Jimenez, 
Nemitz, Vong, Covert, Goldstein)

•
 

Direct observations of OH, HO2

 

at multiple 
heights (Brune)



BEARPEX

1. Evidence supports excess OH at 
low NOx

2. Evidence supports additional T- 
dependent OH

3. Evidence for within canopy OH is 
mixed. Lower T in 2007 season?

See special issue to come in Jan 2009 or so



Implications: 

Faster chemistry in a warmer 
climate!!

Low NOx coupling to HOx wrong in all current 
models! RO2 + HO2 chemistry can now be fixed.



What other N-related chemistry of 
biogenics is poorly understood? 

RONO2 ? 

Secondary Aerosol?
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•
 

RONO2 formation (especially form 
isoprene and other biogenics) is one of the 
key uncertainties in future AQ.

•
 

Models with high RONO2

 

production 
remove NOx

 

faster than they increase O3

 when isoprene emissions grow.



Wu et al, 2007

A ~10% change in global O3

 

when isoprene branching ratio was 
changed from 4.4% to 12%.



Our aircraft observations and a 
global model:

Horowitz et al, JGR 2007.

Found smaller branching ratio more 
consistent within their mechanism.



NO3
 

and N2
 

O5
 

Chemistry

18 20 22 24 26 28 30 32
2

3

4

5

6

7

8

2

3

4

5

6

7

8

 8  6  4  2 

 

 

N
O

3 +
 N

2O
5 l

ife
tim

e 
(m

in
)

Hour of Day (March 1 - March 30, 2007)
60 65 70 75 80 85 90

-50

0

50

100

150

200

250

300

350

-50

0

50

100

150

200

250

300

350

3126211611 6  1 

 

 

N
2O

5 +
 N

O
3 (

pp
t)

March, 2007



In the PBL NO3 reacts with VOC

•
 

N2

 

O5

 

chemistry on aerosol as a source of 
aerosol nitrate is not important near the 
surface.

•
 

The fate of NO3

 

after it reacts with VOC is 
poorly tracked if at all—and no 
observations provide strong constraints.

•
 

This chemistry is a major sink of Ox unless 
the RONO2

 

formed is recycled to NO2

 

in 
the daytime.



Aerosol chemistry:
NO3

 

+ β-pinene
 

in the SAPHIR 
Chamber



Observed kinetics: nitrate formation

o

 

N2

 

O5

 

+NO3

NO2

 

+ O3

 

→ NO3
NO3

 

+ NO2

 

↔ N2

 

O5

2nd

 

re-charge injection of O3
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Observed kinetics: nitrate formation
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β-pinene
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Alkyl nitrate

NO2
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How much aerosol could NO3
 

+ β-pinene 
make globally?

• Mass yield of aerosol from NO3

 

+ β-pinene: ~50%

• Global β-pinene emissions: ~ 33 Tg
 

yr-1;
 

~30% at night

•
 

Fraction of nighttime β-pinene that reacts with NO3

 

, based 
on relative NO3 (1 ppt), O3 lifetimes (60 ppb): ~ 70%

→ .5 x .3 x .7 x 33 Tg
 

yr-1

 

= 3.5 Tg
 

yr-1

• Note β-pinene
 

~10% of total terpene
 

emissions 
~ 33 Tg

 
yr-1

 

SOA??
SOA source estimates:
Kanakidou

 

et al, 2005: 12 –

 

70 Tg

 

year-1

Goldstein & Galbally, 2007: 140 –

 

910 Tg

 

year-1





Emissions

•
 

Satellite observations are on track to be 
the best information about emissions.

•
 

Now 3 instruments: 9:30, 10:30 and 1:30 
13x24km to 40x60km pixels.

•
 

In planning phase, GEO-CAPE continuous 
daytime monitoring ~5km pixels





December 2006



April 2006



Satellite observations of NO2

 

are much more 
accurate than the ground based network 
which has a bias of as much as 300% that 
varies in space, in time on diurnal and 
seasonal scales and is not independent of 
instrument configuration.

Satellite observations are not biased by local 
proximity to highways, etc. 



Resolution: 0.08° x 0.08° (~ 8km x 8km)Resolution: 0.25° x 0.25° (~ 25km x 25km)Resolution: 0.04° x 0.04° (~ 4km x 4km)

Data from 
July 2006



NO2 Satellite Comparison

See in press papers by 

Bucsela et al. JGR 
Boersma et al. Atm. Env.
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summer, when there is the smallest memory of the 
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Conclusions:

Observations demonstrate that chemistry will run 
faster in a warmer climate than in our models. 

If this is the only significant error (and it is not) this 
means the atmosphere is closer to being NOx limited 
than we are predicting and that NOx controls will be 
more effective than we are predicting.

RONO2 formation/lifetimes in some models are too 
high/long

This changes the sign of model response to increasing T, 
where biogenics are dominant.

NO3 + biogenics have high SOA yields
More SOA in a warmer climate?

Satellites are on the cusp of providing NOx 
emission inventories and are already a strong 
constraint on models.
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